

Reg.	No.	:	****	 	
Name					 4

III Semester M.Sc. Degree (CBSS – Reg./Sup./Imp.)
Examination, October 2022
(2019 Admission Onwards)
MATHEMATICS
MAT3C11: Number Theory

Time: 3 Hours

Max. Marks: 80

PART - A

Answer any four questions from Part A. Each question carries 4 marks.

- 1. Prove that the infinite series $\sum_{n=1}^{\infty} 1/P_n$ diverges.
- 2. State and prove Euclid's lemma.
- 3. If f is multiplicative then prove that f(1) = 1.
- Assume that (a, m) = d. Then prove that the linear congruence ax ≡ b (mod) m
 has solutions if and only if d|b.
- 5. Determine whether 219 is a quadratic residue or non residue mod 383.
- 6. Prove that an algebraic number α is an algebraic integer if and only if its minimum polynomial over Q has coefficients in Z.

PART - B

Answer any four questions from Part B not omitting any Unit, Each question carries 16 marks.

Unit - 1

- 7. a) State and prove the division algorithm.
 - b) Prove that every integer n > 1 is either a prime number or a product of prime numbers.

- 8. a) If $n \ge 1$, then Prove that $\phi(n) = \sum_{d|n} \mu(d) \frac{n}{d}$.
 - b) Assume f is multiplicative. Prove that $f^{-1}(n) = \mu(n) f(n)$ for every square free
- 9. a) State and prove Lagrange's theorem.
 - b) Solve the congruence $5x \equiv 3 \pmod{24}$.

Unit-2

- 10. a) Prove that the Legendre' symbol (n|p) is a completely multiplicative function of n.
 - b) State and prove quadratic reciprocity law.
- 11. a) Let (a, m) = 1. Then prove that if a is a primitive root mod m if and only if the numbers $a, a^2, ..., a^{\phi(m)}$ form a reduced residue system mod m.
 - b) If p is an odd prime and $\alpha \ge 1$ then prove that there exist an odd primitive roots g modulo p^{α} and each such g is also a primitive root modulo $2p^{\alpha}$.
- 12. a) Write in detail any one application of primitive roots in cryptography.
 - b) Solve the superincreasing knapsack problem.

$$28 = 3x_1 + 5x_2 + 11x_3 + 20x_4 + 41x_5$$

Unit - 3

- 13. a) Prove that every subgroup H of a free abelian group G of rank n is free of rank s \leq n. Moreover there exist a basis $u_1, u_2, ..., u_n$ of G and positive integers $\alpha_1, \alpha_2, ..., \alpha_s$ such that, $\alpha_1 u_1, \alpha_2 u_2, ..., \alpha_s u_s$ is a basis for H.
 - b) Let G be a free abelian group of rank n with basis $\{x_1, x_2, ..., x_n\}$. Suppos (a_{ij}) is an $n \times n$ matrix with integer entries. Then prove that the element $y_i = \sum_i a_{ij} x_j$ form a basis of G if and only if (a_{ij}) is unimodular.

- 14. a) Suppose $\{\alpha_1, \alpha_2, ..., \alpha_n\} \in D$ form a Q-basis for K. Then prove that if $\Delta[\alpha_1, \alpha_2, ..., \alpha_n]$ is square free then $\{\alpha_1, \alpha_2, ..., \alpha_n\}$ is an integral basis.
 - b) Prove that every number field K possess an integral basis and the additive group of D is free abelian group of rank n equal to the degree of K.
- 15. a) Let d be a square free rational integer. Then prove that the integers of $Q(\sqrt{d})$ are
 - a) $Z|\sqrt{d}|$ if $d \not\equiv 1 \pmod{4}$
 - b) $Z | \frac{1}{2} + \frac{1}{2} \sqrt{d} | \text{ if d} \not\equiv 1 \pmod{4}$.
 - b) Prove that the minimum polynomial of $\xi=e^{\frac{-p}{p}}$, p an odd prime, over Q is $f(t)=t^{p-1}+t^{p-2}+...+t+1$ and the degree of Q(ξ) is p-1.

